Chapter 12 Notes

DNA

What makes up Genes?

- 3 teams of scientists answered this question.
 - 1. Griffith Transformation
 - 2. Avery DNA destroying protein
 - 3. Hershey-Chase -- virus

Griffith – used bacteria

- 2 types (S and R) smooth and rough
 - Smooth caused pneumonia (protein coat)
 - DEADLY
 - Killed the S not deadly
 - Rough no pneumonia (no protein coat)
 - Not DEADLY
 - -S (heat killed) + R (live) \rightarrow mouse died
 - Something in S got into R to Transform it into Live S

Avery

• Same experiment as Griffith but.....

Dead S + Protein destroying Enzyme + live R → Kills mouse –PROTEIN IS NOT THE GENETIC MATERIAL

Dead S + DNA destroying Enzyme + live R
 → Mouse lives (live S found)

DNA must of got from S into R

-DNA IS THE GENETIC MATERIAL

msmith81@gmail.com

Hershey and Chase

CAddison Wesley Longman, Inc.

The Hershey-Chase Experiment

Hershey Chase

- 2 types of viruses
 - Radioactive DNA
 - Radioactive protein coat
- What ever part gets into the bacteria cell (DNA or protein) that is the genetic material
- It was found that the bacteria cell became radioactive with radioactive DNA, not radioactive protein

DNA#

- 1. Transfer genes from generation to generation
- 2. Code for traits
- 3. Easily copied

Made of **NUCLEOTIDES**

DNA continue#

- A Gene is a code of the bases

 ATTCCCC code for 1 trait (brown hair)
 ATTGGC changes the trait (blonde hair)
- Chargaff's rule A pairs with T
 C pairs with G
 - Rosalind Franklin X-ray diffraction picture

– DNA in an X pattern

Rosalind Franklin

Franklin's X-ray diffract photograph of DNA

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 11.5 Chargaff's Rule © 2004 Sinauer Associates, Inc. and W. H. Freeman & Co.

Watson and Crick#

- Put it all together in a model
 - DNA is a double helix
 - (Franklin's picture)
 - 2 strands with basis
 - facing each other
 - Bases pair up
 (Chargaff's rule)

SCIENCEPhotolibrary

Chromosomes and DNA Replication

Chromosomes

- DNA wound up around proteins called histones make up chromosomes
- Different organisms have different number of chromosomes
 - Humans have 46
 - Fruit flies have 8
 - Giant Sequoias have 22

Chromatin and Condensed Chromosome Structure

DNA Replication#

- Make an exact copy of the DNA
- Separate the two sides and copy both
 - Each new copy have one old and one new strand
 - Eukaryotes does thousands of "Replication forks" at a time
 - Prokaryotes do 2 going in opposite directions

DNA Replication Cont.#

- **DNA Helicase unwinds** a portion of the DNA
- <u>DNA polymerase</u> goes along single strand and adds complimentary base to each single base
 - Old DNA strand serves as a template for the new strand
- <u>DNA Polymerase</u> goes back and proofreads new double strand of DNA
 - From One in a million to one in 100 million
 ERRORS

RNA and Protein Synthesis

2 Steps to make a Protein from DNA

- **1. Transcription**
- 2. Translation

- STOP AND LOOK AT THE <u>CENTRAL DOGMA NOTES</u> (OVERHEAD) ON MY WEBSITE
 THE NOTES BELOW I DID NOT
- THE NOTES BELOW I DID NOT USE IN CLASS

RNA

- 3 types
 - 1. mRNA (DNA copy) messenger
 - 2. rRNA (Ribosome) ribosomal
 - 3. tRNA (AA to mRNA) transfer

TRANSPORT

TRANSLATION

 3 Differences from DNA
 1. Nucleotide (uracil not thymine)

Sugar (ribose not deoxyribose)
 Single strand not

double strand)

Complementary DNA strands RNA strand

Transcription

- RNA Polymerase binds and unwinds DNA
- RNA Polymerase moves along one DNA strand
 - Adds RNA nucleotide bases complementary to DNA – moves along DNA

Translation

- mRNA used as a template by Ribosome
- Ribosome pairs
 mRNA codon (3 bases)
 with a tRNA anticodon
 (3 complimentary bases)
- tRNA has a specific
 Amino Acid for each
 codon

Transcription

The Genetic Code Page 303

Using Page 303 find the Amino Acid

- 1. CCC
- 2. AUA
- 3. CCA
- 4. AAC
- 5. UUC
- 6. UAC

From DNA find Amino Acids

DNA: TTCAGCCCGAATTTTACT mRNA:

Amino A:

Mutation

- 1. Point Mutation: occur at a single point
 - 1. Substitutions
 - 2. Insertions
 - 3. Deletions
- 2. Frame-shift Mutation: Caused by an insertion or deletion

